학술논문

The proto-oncogene c-myc acts through the cyclin-dependent kinase (Cdk) inhibitor p27(Kip1) to facilitate the activation of Cdk4/6 and early G(1) phase progression.
Document Type
Article
Source
Journal of Biological Chemistry; August 2002, Vol. 277 Issue: 34 p31263-9, 7p
Subject
Language
ISSN
00219258; 1083351X
Abstract
Progression through the early G(1) phase of the cell cycle requires mitogenic stimulation, which ultimately leads to the activation of cyclin-dependent kinases 4 and 6 (Cdk4/6). Cdk4/6 activity is promoted by D-type cyclins and opposed by Cdk inhibitor proteins. Loss of c-myc proto-oncogene function results in a defect in the activation of Cdk4/6. c-myc(-/-) cells express elevated levels of the Cdk inhibitor p27(Kip1) and reduced levels of Cdk7, the catalytic subunit of Cdk-activating kinase. We show here that in normal (c-myc(+/+)) cells, the majority of cyclin D-Cdk4/6 complexes are assembled with p27 and remain inactive during cell cycle progression; their function is presumably to sequester p27 from Cdk2 complexes. A small fraction of Cdk4/6 protein was found in lower molecular mass catalytically active complexes. Conditional overexpression of p27 in c-myc(+/+) cells caused inhibition of Cdk4/6 activity and elicited defects in G(0)-to-S phase progression very similar to those seen in c-myc(-/-) cells. Overexpression of cyclin D1 in c-myc(-/-) cells rescued the defect in Cdk4/6 activity, indicating that the limiting factor is the number of cyclin D-Cdk4/6 complexes. Cdk-activating kinase did not rescue Cdk4/6 activity. We propose that the defect in Cdk4/6 activity in c-myc(-/-) cells is caused by the elevated levels of p27, which convert the low abundance activable cyclin D-Cdk4/6 complexes into unactivable complexes containing higher stoichiometries of p27. These observations establish p27 as a physiologically relevant regulator of cyclin D-Cdk4/6 activity as well as mechanistically a target of c-Myc action and provide a model by which c-Myc influences the early-to-mid G(1) phase transition.