학술논문

Embedded Fiber Bragg Grating (FBG) Sensors Fabricated by Ultrasonic Additive Manufacturing for High-Frequency Dynamic Strain Measurements
Document Type
Article
Source
IEEE Sensors Journal; February 2024, Vol. 24 Issue: 3 p2853-2862, 10p
Subject
Language
ISSN
1530437X; 15581748
Abstract
This article demonstrates high-frequency dynamic strain measurements using fiber Bragg grating (FBG) sensors embedded in metal parts. Using an ultrasonic additive manufacturing (UAM) process, FBGs inscribed in polyimide coated optical fibers were embedded in aluminum parts. An electromagnetic shaker was used to exert dynamic events on the embedded FBG sensors with frequencies from 1 to 10 kHz. The high-speed interrogation of FBG sensors was accomplished using a tunable vertical-cavity surface-emitting laser (VCSEL) and a high-speed interrogation system sampling at 120 kHz. The strain response measured by the FBG sensors was compared with real-time measurements using a laser velocimeter. A finite-element analysis (FEA) was performed to simulate responses to both static strain and high-frequency dynamic strain. Results show that strains as small as $2.5 \mu \varepsilon $ can be resolved at frequencies up to 10 kHz.