학술논문

Induction and nuclear translocation of hypoxia-inducible factor-1 (HIF-1): heterodimerization with ARNT is not necessary for nuclear accumulation of HIF-1alpha.
Document Type
Article
Source
Journal of Cell Science; April 1999, Vol. 112 Issue: 8 p1203-12, 10p
Subject
Language
ISSN
00219533; 14779137
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a master regulator of mammalian oxygen homeostasis. HIF-1 consists of two subunits, HIF-1alpha and the aryl hydrocarbon receptor nuclear translocator (ARNT). Whereas hypoxia prevents proteasomal degradation of HIF-1alpha, ARNT expression is thought to be oxygen-independent. We and others previously showed that ARNT is indispensable for HIF-1 DNA-binding and transactivation function. Here, we have used ARNT-mutant mouse hepatoma and embryonic stem cells to examine the requirement of ARNT for accumulation and nuclear translocation of HIF-1alpha in hypoxia. As shown by immunofluorescence, HIF-1alpha accumulation in the nucleus of hypoxic cells was independent of the presence of ARNT, suggesting that nuclear translocation is intrinsic to HIF-1alpha. Co-immunoprecipitation of HIF-1alpha together with ARNT could be performed in nuclear extracts but not in cytosolic fractions, implying that formation of the HIF-1 complex occurs in the nucleus. A proteasome inhibitor and a thiol-reducing agent could mimic hypoxia by inducing HIF-1alpha in the nucleus, indicating that escape from proteolytic degradation is sufficient for accumulation and nuclear translocation of HIF-1alpha. During biochemical separation, both HIF-1alpha and ARNT tend to leak from the nuclei in the absence of either subunit, suggesting that heterodimerization is required for stable association within the nuclear compartment. Nuclear stabilization of the heterodimer might also explain the hypoxically increased total cellular ARNT levels observed in some of the cell lines examined.