학술논문

Analysis of DNA methylation in single circulating tumor cells
Document Type
Article
Source
Oncogene; June 2017, Vol. 36 Issue: 23 p3223-3231, 9p
Subject
Language
ISSN
09509232; 14765594
Abstract
Direct analysis of circulating tumor cells (CTCs) can inform on molecular mechanisms underlying systemic spread. Here we investigated promoter methylation of three genes regulating epithelial-to-mesenchymal transition (EMT), a key mechanism enabling epithelial tumor cells to disseminate and metastasize. For this, we developed a single-cell protocol based on agarose-embedded bisulfite treatment, which allows investigating DNA methylation of multiple loci via a multiplex PCR (multiplexed-scAEBS). We established our assay for the simultaneous analysis of three EMT-associated genes miR-200c/141, miR-200b/a/429 and CDH1in single cells. The assay was validated in solitary cells of GM14667, MDA-MB-231 and MCF-7 cell lines, achieving a DNA amplification efficiency of 70% with methylation patterns identical to the respective bulk DNA. Then we applied multiplexed-scAEBS to 159 single CTCs from 11 patients with metastatic breast and six with metastatic castration-resistant prostate cancer, isolated via CellSearch (EpCAMpos/CKpos/CD45neg/DAPIpos) and subsequent FACS sorting. In contrast to CD45poswhite blood cells isolated and processed by the identical approach, we observed in the isolated CTCs methylation patterns resembling more those of epithelial-like cells. Methylation at the promoter of microRNA-200 family was significantly higher in prostate CTCs. Data from our single-cell analysis revealed an epigenetic heterogeneity among CTCs and indicates tumor-specific active epigenetic regulation of EMT-associated genes during blood-borne dissemination.