학술논문

A flexoelectric microelectromechanical system on silicon
Document Type
Article
Source
Nature Nanotechnology; March 2016, Vol. 11 Issue: 3 p263-266, 4p
Subject
Language
ISSN
17483387; 17483395
Abstract
Flexoelectricity allows a dielectric material to polarize in response to a mechanical bending moment and, conversely, to bend in response to an electric field. Compared with piezoelectricity, flexoelectricity is a weak effect of little practical significance in bulk materials. However, the roles can be reversed at the nanoscale. Here, we demonstrate that flexoelectricity is a viable route to lead-free microelectromechanical and nanoelectromechanical systems. Specifically, we have fabricated a silicon-compatible thin-film cantilever actuator with a single flexoelectrically active layer of strontium titanate with a figure of merit (curvature divided by electric field) of 3.33 MV−1, comparable to that of state-of-the-art piezoelectric bimorph cantilevers.