학술논문

Large Common Mitochondrial DNA Deletions Are Associated with a Mitochondrial SNP T14798C Near the 3′ Breakpoints
Document Type
Article
Source
Complex Psychiatry; September 2022, Vol. 8 Issue: 3-4 p90-98, 9p
Subject
Language
ISSN
26733005; 2673298X
Abstract
Introduction:Large somatic deletions of mitochondrial DNA (mtDNA) accumulate with aging in metabolically active tissues such as the brain. We have cataloged the breakpoints and frequencies of large mtDNA deletions in the human brain. Methods:We quantified 112 high-frequency mtDNA somatic deletions across four human brain regions with the Splice-Break2 pipeline. In addition, we utilized PLINK/Seq to test the association of mitochondrial genotypes with the abundance of these high-frequency mtDNA deletions. A conservative pvalue threshold of 5E−08 was used to find the significant loci. Results:One mtDNA SNP (T14798C) was significantly associated with mtDNA deletions in two brain regions, the dorsolateral prefrontal cortex (DLPFC) and the superior temporal gyrus. Since the DLPFC showed the most robust association between T14798C and two deletion breakpoints (7816–14807 and 5462–14807), this association was tested in the DLPFC of a replication sample and validated the first results. Incorporating the C allele at 14,798 bp increased the perfect/imperfect length of the repeat at the 3′ breakpoint of the two associated deletions. Conclusion:This is the first study to identify the association of mtDNA SNP with large mtDNA deletions in the human brain. The T14798C allele located in the MT-CYBgene is a common polymorphism that occurs in several mitochondrial haplogroups. We hypothesize that the T14798C association with two deletions occurs by extending the repeat length around the 3′ deletion breakpoints. This simple mechanism suggests that mtDNA SNPs can affect the mitochondrial genome structure, especially in brain where high levels of reactive oxygen species lead to deletion accumulation with aging.