학술논문

Sonication-assisted liquid phase exfoliation of two-dimensional CrTe 3 under inert conditions.
Document Type
Academic Journal
Author
Synnatschke K; Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany; School of Physics, University of Dublin, Trinity College, Dublin 2, Ireland.; Moses Badlyan N; Institute for Solid-State Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany; Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany.; Wrzesińska A; Chair for Emerging Electronic Technologies, TU Dresden, Nöthnitzer Str. 61, Dresden, 01187 Sachsen, Germany; Leibniz-Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, Dresden 01069, Sachsen, Germany.; Lozano Onrubia G; Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.; Hansen AL; Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein, Germany; Institute of Inorganic Chemistry, University of Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany.; Wolff S; Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany.; Tornatzky H; Institute for Solid-State Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany; Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V, Hausvogteiplatz 5-7, 10117 Berlin, Germany.; Bensch W; Institute of Inorganic Chemistry, University of Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany.; Vaynzof Y; Chair for Emerging Electronic Technologies, TU Dresden, Nöthnitzer Str. 61, Dresden, 01187 Sachsen, Germany; Leibniz-Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, Dresden 01069, Sachsen, Germany.; Maultzsch J; Institute for Solid-State Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany; Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany.; Backes C; Chair of Physical Chemistry of Nanomaterials, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany. Electronic address: backes@uni-kassel.de.
Source
Publisher: Elsevier Science Country of Publication: Netherlands NLM ID: 9433356 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1873-2828 (Electronic) Linking ISSN: 13504177 NLM ISO Abbreviation: Ultrason Sonochem Subsets: PubMed not MEDLINE; MEDLINE
Subject
Language
English
Abstract
Liquid phase exfoliation (LPE) has been used for the successful fabrication of nanosheets from a large number of van der Waals materials. While this allows to study fundamental changes of material properties' associated with reduced dimensions, it also changes the chemistry of many materials due to a significant increase of the effective surface area, often accompanied with enhanced reactivity and accelerated oxidation. To prevent material decomposition, LPE and processing in inert atmosphere have been developed, which enables the preparation of pristine nanomaterials, and to systematically study compositional changes over time for different storage conditions. Here, we demonstrate the inert exfoliation of the oxidation-sensitive van der Waals crystal, CrTe 3 . The pristine nanomaterial was purified and size-selected by centrifugation, nanosheet dimensions in the fractions quantified by atomic force microscopy and studied by Raman, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX) and photo spectroscopic measurements. We find a dependence of the relative intensities of the CrTe 3 Raman modes on the propagation direction of the incident light, which prevents a correlation of the Raman spectral profile to the nanosheet dimensions. XPS and EDX reveal that the contribution of surface oxides to the spectra is reduced after exfoliation compared to the bulk material. Further, the decomposition mechanism of the nanosheets was studied by time-dependent extinction measurements after water titration experiments to initially dry solvents, which suggest that water plays a significant role in the material decomposition.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.)