학술논문

Data-Driven Path Collective Variables.
Document Type
Academic Journal
Author
France-Lanord A; Institut des Sciences du Calcul et des Données, ISCD, Sorbonne Université, F-75005 Paris, France.; Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, F-75005 Paris, France.; Vroylandt H; Institut des Sciences du Calcul et des Données, ISCD, Sorbonne Université, F-75005 Paris, France.; Salanne M; Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France.; Institut Universitaire de France (IUF), 75231 Paris, France.; Rotenberg B; Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France.; Saitta AM; Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, F-75005 Paris, France.; Pietrucci F; Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, F-75005 Paris, France.
Source
Publisher: American Chemical Society Country of Publication: United States NLM ID: 101232704 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1549-9626 (Electronic) Linking ISSN: 15499618 NLM ISO Abbreviation: J Chem Theory Comput Subsets: PubMed not MEDLINE; MEDLINE
Subject
Language
English
Abstract
Identifying optimal collective variables to model transformations using atomic-scale simulations is a long-standing challenge. We propose a new method for the generation, optimization, and comparison of collective variables that can be thought of as a data-driven generalization of the path collective variable concept. It consists of a kernel ridge regression of the committor probability, which encodes a transformation's progress. The resulting collective variable is one-dimensional, interpretable, and differentiable, making it appropriate for enhanced sampling simulations requiring biasing. We demonstrate the validity of the method on two different applications: a precipitation model and the association of Li + and F - in water. For the former, we show that global descriptors such as the permutation invariant vector allow reaching an accuracy far from the one achieved via simpler, more intuitive variables. For the latter, we show that information correlated with the transformation mechanism is contained in the first solvation shell only and that inertial effects prevent the derivation of optimal collective variables from the atomic positions only.