학술논문

The Long-Term Impact of Ionizing Radiation on DNA Damage in Patients Undergoing Multiple Cardiac Catheterizations.
Document Type
Academic Journal
Author
Cimci M; Department of Cardiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey. murat_cimci@hotmail.com.; Batar B; Department of Medical Biology, Tekirdag Namik Kemal University School of Medicine, Tekirdaǧ, Turkey.; Bostanci M; Department of Medical Biology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.; Durmaz E; Department of Cardiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.; Karayel B; Department of Internal Medicine, Health Science University, Kartal Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey.; Raimoglou D; Department of Cardiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.; Guven M; Department of Medical Biology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.; Karadag B; Department of Cardiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
Source
Publisher: Humana Press Country of Publication: United States NLM ID: 101135818 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0259 (Electronic) Linking ISSN: 15307905 NLM ISO Abbreviation: Cardiovasc Toxicol Subsets: MEDLINE
Subject
Language
English
Abstract
Ionizing radiation (IR) exposures have increased exponentially in recent years due to the rise in diagnostic and therapeutic interventions. A number of small-scale studies investigated the long-term effect of IR on health workers or immediate effects of IR on patients undergoing catheterization procedures; however, the long-term impact of multiple cardiac catheterizations on DNA damage on a patient population is not known. In this study, the effects of IR on DNA damage, based on micronuclei (MN) frequency and 8-hydroxy-2'-deoxyguanosine (8-OHdG) as markers in peripheral lymphocytes, were evaluated in patients who previously underwent multiple cardiac catheterization procedures. Moreover, genetic polymorphisms in genes PARP1 Val762Ala, OGG1 Ser326Cys, and APE1 Asn148Glu as a measure of sensitivity to radiation exposure were also investigated in the same patient population. The patients who underwent ≥ 3 cardiac catheterization procedures revealed higher DNA injury in comparison to the patients who underwent ≤ 2 procedures, documented with the presence of higher level of MN frequency (6.4 ± 4.8 vs. 9.1 ± 4.3, p = 0.002) and elevated serum 8-OHdG levels (33.7 ± 3.8 ng/mL vs. 17.4 ± 1.9 ng/mL, p = 0.001). Besides, OGG1 Ser326Cys and APE1 Asn148Glu heterozygous and homozygous polymorphic types, which are related with DNA repair mechanisms, were significantly associated with MN frequency levels (p = 0.006 for heterozygous and p = 0.001 for homozygous with respect to OGG1 Ser326Cys, p = 0.007 for heterozygous and p = 0.001 for homozygous with respect to APE1 Asn148Glu). There was no significant difference in terms of PARP1 Val762Ala gene polymorphism between two groups.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)