학술논문

The response patterns of stream biofilms to urban sewage change with exposure time and dilution.
Document Type
Academic Journal
Author
Sabater-Liesa L; Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.; Montemurro N; Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.; Font C; ICRA, Carrer Emili Grahit 101, Girona 17003, Spain.; Ginebreda A; Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain. Electronic address: antoni.ginebreda@cid.csic.es.; González-Trujillo JD; ICRA, Carrer Emili Grahit 101, Girona 17003, Spain.; Mingorance N; ICRA, Carrer Emili Grahit 101, Girona 17003, Spain.; Pérez S; Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.; Barceló D; Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain; ICRA, Carrer Emili Grahit 101, Girona 17003, Spain.
Source
Publisher: Elsevier Country of Publication: Netherlands NLM ID: 0330500 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1879-1026 (Electronic) Linking ISSN: 00489697 NLM ISO Abbreviation: Sci Total Environ Subsets: MEDLINE
Subject
Language
English
Abstract
Urban wastewater inputs are a relevant pollution source to rivers, contributing a complex mixture of nutrients, organic matter and organic microcontaminants to these systems. Depending on their composition, WWTP effluents might perform either as enhancers (subsidizers) or inhibitors (stressors) of biological activities. In this study, we evaluated in which manner biofilms were affected by treated urban WWTP effluent, and how much they recovered after exposure was terminated. We used indoor artificial streams in a replicated regression design, which were operated for a total period of 56 days. During the first 33 days, artificial streams were fed with increasing concentration of treated effluents starting with non-contaminated water and ending with undiluted effluent. During the recovery phase, the artificial streams were fed with unpolluted water. Sewage effluents contained high concentrations of personal care products, pharmaceuticals, nutrients, and dissolved organic matter. Changes in community structure, biomass, and biofilm function were most pronounced in those biofilms exposed to 58% to 100% of WWTP effluent, moving from linear to quadratic or cubic response patterns. The return to initial conditions did not allow for complete biofilm recovery, but biofilms from the former medium diluted treatments were the most benefited (enhanced response), while those from the undiluted treatments showed higher stress (inhibited response). Our results indicated that the effects caused by WWTP effluent discharge on biofilm structure and function respond to the chemical pressure only in part, and that the biofilm dynamics (changes in community composition, increase in thickness) imprint particular response pathways over time.
(Copyright © 2019 Elsevier B.V. All rights reserved.)