학술논문

Skin marker-based versus bone morphology-based coordinate systems of the hindfoot and forefoot.
Document Type
Academic Journal
Author
Hulshof CM; Department of Rehabilitation Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9 1105 AZ, Amsterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9 1105 AZ, Amsterdam, the Netherlands; Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118 1081 HZ, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands. Electronic address: c.m.hulshof@amsterdamumc.nl.; Schallig W; Department of Rehabilitation Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9 1105 AZ, Amsterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9 1105 AZ, Amsterdam, the Netherlands; Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118 1081 HZ, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands. Electronic address: w.schallig@amsterdamumc.nl.; van den Noort JC; Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9 1105 AZ, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands.; Streekstra GJ; Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9 1105 AZ, Amsterdam, the Netherlands; Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9 1105 AZ, Amsterdam, the Netherlands.; Kleipool RP; Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9 1105 AZ, Amsterdam, the Netherlands.; Gg Dobbe J; Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9 1105 AZ, Amsterdam, the Netherlands.; Maas M; Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9 1105 AZ, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands.; Harlaar J; Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118 1081 HZ, Amsterdam, the Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2 2628 CD, Delft, the Netherlands; Department of Orthopedics & Sports Medicine, Erasmus MC, Doctor Molewaterplein 40 3015 GD, Rotterdam, the Netherlands.; van der Krogt MM; Department of Rehabilitation Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9 1105 AZ, Amsterdam, the Netherlands; Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118 1081 HZ, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands.
Source
Publisher: Elsevier Science Country of Publication: United States NLM ID: 0157375 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1873-2380 (Electronic) Linking ISSN: 00219290 NLM ISO Abbreviation: J Biomech Subsets: MEDLINE
Subject
Language
English
Abstract
Segment coordinate systems (CSs) of marker-based multi-segment foot models are used to measure foot kinematics, however their relationship to the underlying bony anatomy is barely studied. The aim of this study was to compare marker-based CSs (MCSs) with bone morphology-based CSs (BCSs) for the hindfoot and forefoot. Markers were placed on the right foot of fifteen healthy adults according to the Oxford, Rizzoli and Amsterdam Foot Model (OFM, RFM and AFM, respectively). A CT scan was made while the foot was loaded in a simulated weight-bearing device. BCSs were based on axes of inertia. The orientation difference between BCSs and MCSs was quantified in helical and 3D Euler angles. To determine whether the marker models were able to capture inter-subject variability in bone poses, linear regressions were performed. Compared to the hindfoot BCS, all MCSs were more toward plantar flexion and internal rotation, and RFM was also oriented toward more inversion. Compared to the forefoot BCS, OFM and RFM were oriented more toward dorsal and plantar flexion, respectively, and internal rotation, while AFM was not statistically different in the sagittal and transverse plane. In the frontal plane, OFM was more toward eversion and RFM and AFM more toward inversion compared to BCS. Inter-subject bone pose variability was captured with RFM and AFM in most planes of the hindfoot and forefoot, while this variability was not captured by OFM. When interpreting multi-segment foot model data it is important to realize that MCSs and BCSs do not always align.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.)