학술논문

Efficacy of depatuxizumab mafodotin (ABT-414) in preclinical models of head and neck cancer.
Document Type
Academic Journal
Author
Mani L; Department of Otolaryngology, Vanderbilt University, Nashville, USA.; Naveed A; Department of Otolaryngology, Vanderbilt University, Nashville, USA.; McAdoo A; Department of Otolaryngology, Vanderbilt University, Nashville, USA.; Rosenthal E; Department of Otolaryngology, Vanderbilt University, Nashville, USA.; Hom M; Department of Otolaryngology, Vanderbilt University, Nashville, USA.
Source
Publisher: Irl Press At Oxford University Press Country of Publication: England NLM ID: 8008055 Publication Model: Print Cited Medium: Internet ISSN: 1460-2180 (Electronic) Linking ISSN: 01433334 NLM ISO Abbreviation: Carcinogenesis Subsets: MEDLINE
Subject
Language
English
Abstract
Epidermal growth factor receptor (EGFR) is highly expressed in 80-90% of head and neck squamous cell carcinomas (HNSCCs), making it an ideal target for antibody-drug conjugates. Depatuxizumab mafodotin (ABT-414), is an EGFR-targeting ADC comprised of the monoclonal antibody ABT-806 conjugated to monomethyl auristatin F, a tubulin polymerization inhibitor. This study assessed the in vivo efficacy of ABT-414 in HNSCC. The effects of ABT-414 on HNSCCs were determined using in vitro cytotoxicity assays and in vivo flank xenograft mouse models. The distribution of ABT-414 was assessed ex vivo via optical imaging methods using a conjugate of ABT-414 to the near-infrared agent IRDye800. In vitro treatment of high EGFR-expressing human HNSCC cell lines (UMSCC47 and FaDu) with ABT-414 (0-3.38 nM) resulted in dose-dependent cell death (IC50 values of 0.213 nM and 0.167 nM, respectively). ABT-414 treatment of the FaDu mouse xenografts displayed antitumor activity (P = 0.023) without a change in body mass (P = 0.1335), whereas treatment of UMSCC47 did not generate a significant response (P = 0.1761). Fluorescence imaging revealed ABT-414-IRDye800 accumulation in the tumors of both FaDu and UMSCC47 cell lines, with a signal-to-background ratio of >10. ABT-414 treatment yielded antitumor activity in FaDu tumors, but not in UMSCC47, highlighting the potential for ABT-414 efficacy in high EGFR-expressing tumors. Although ABT-414-IRDye800 localized tumors in both cell lines, the differing antitumor responses highlight the need for further investigation into the role of the tumor microenvironment in drug delivery.
(© The Author(s) 2024. Published by Oxford University Press. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)