학술논문

Ethyl Isothiocyanate as a Novel Antifungal Agent Against Candida albicans.
Document Type
Academic Journal
Author
Patil SB; Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India.; Sharma RK; Department of Obstetrics and Gynaecology, D. Y. Patil Medical College Hospital and Research Institute, Kadamwadi, Kolhapur, Maharashtra, 416003, India.; Gavandi TC; Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India.; Basrani ST; Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India.; Chougule SA; Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India.; Yankanchi SR; Department of Zoology, Shivaji University, Kolhapur, Maharashtra, 416004, India.; Jadhav AK; Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India. ashujadhav09@gmail.com.; Karuppayil SM; Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India. prof.karuppayil@gmail.com.
Source
Publisher: Springer International Country of Publication: United States NLM ID: 7808448 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-0991 (Electronic) Linking ISSN: 03438651 NLM ISO Abbreviation: Curr Microbiol Subsets: MEDLINE
Subject
Language
English
Abstract
In the recent years, occurrence of candidiasis has increased drastically which leads to significant mortality and morbidity mainly in immune compromised patients. Glucosinolate (GLS) derivatives are reported to have antifungal activities. Ethyl isothiocyanate (EITC) and its antifungal activity and mechanism of action is still unclear against Candida albicans. The present work was designed to get a mechanistic insight in to the anti-Candida efficacy of EITC through in vitro and in vivo studies. EITC inhibited C. albicans planktonic growth at 0.5 mg/ml and virulence factors like yeast to hyphal form morphogenesis (0.0312 mg/ml), adhesion to polystyrene surface (0.0312 mg/ml) and biofilm formation (developing biofilm at 2 mg/ml and mature biofilm at 0.5 mg/ml) effectively. EITC blocked ergosterol biosynthesis and arrested C. albicans cells at S-phase. EITC caused ROS-dependent cellular death and nuclear or DNA fragmentation. EITC at 0.0312 mg/ml concentration regulated the expression of genes involved in the signal transduction pathway and inhibited yeast to hyphal form morphogenesis by upregulating TUP1, MIG1, and NRG1 by 3.10, 5.84 and 2.64-fold, respectively and downregulating PDE2 and CEK1 genes by 15.38 and 2.10-fold, respectively. EITC has showed haemolytic activity at 0.5 mg/ml concentration. In vivo study in silk worm model showed that EITC has toxicity to C. albicans at 0.5 mg/ml concentration. Thus, from present study we conclude that EITC has antifungal activity and to reduce its MIC and toxicity, combination study with other antifungal drugs need to be done. EITC and its combinations might be used as alternative therapeutics for the prevention and treatment of C. albicans infections.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)