학술논문

Implementing an electronic sideband offset lock for isotope shift spectroscopy in radium.
Document Type
Academic Journal
Source
Publisher: Optica Publishing Group Country of Publication: United States NLM ID: 101137103 Publication Model: Print Cited Medium: Internet ISSN: 1094-4087 (Electronic) Linking ISSN: 10944087 NLM ISO Abbreviation: Opt Express Subsets: PubMed not MEDLINE; MEDLINE
Subject
Language
English
Abstract
We demonstrate laser frequency stabilization with at least 6 GHz of offset tunability using an in-phase/quadrature (IQ) modulator to generate electronic sidebands (ESB) on a titanium sapphire laser at 714 nm and we apply this technique to perform isotope shift spectroscopy of 226 Ra and 225 Ra. By locking the laser to a single resonance of a high finesse optical cavity and adjusting the lock offset, we determine the frequency difference between the magneto-optical trap (MOT) transitions in the two isotopes to be 2630.0 ± 0.3 MHz, a factor of 29 more precise than the previously available data. Using the known value of the hyperfine splitting of the 3 P 1 level, we calculate the isotope shift for the 1 S 0 to 3 P 1 transition to be 2267.0 ± 2.2 MHz, a factor of 8 more precise than the best available value. Our technique could be applied to countless other atomic systems to provide unprecedented precision in isotope shift spectroscopy and other relative frequency comparisons.