학술논문

Molecular insights of anti-diabetic compounds and its hyaluronic acid conjugates against aldose reductase enzyme through molecular modeling and simulations study-a novel treatment option for inflammatory diabetes.
Document Type
Academic Journal
Author
Jayabal D; Department of Biochemistry, Periyar University, Salem, 636011, Tamil Nadu, India.; Department of Biochemistry, Sri Ganesh College of Arts and Science, Salem, 636014, Tamil Nadu, India.; Jayanthi S; Department of Biochemistry, Shri Sakthikailash Women's College, Ammapet, Salem, 636003, Tamil Nadu, India. rajan29@gmail.com.; Thirumalaisamy R; Department of Biotechnology, Sona College of Arts & Science, Salem, 636005, Tamil Nadu, India.; Shimu MSS; Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh.
Source
Publisher: Springer Country of Publication: Germany NLM ID: 9806569 Publication Model: Electronic Cited Medium: Internet ISSN: 0948-5023 (Electronic) Linking ISSN: 09485023 NLM ISO Abbreviation: J Mol Model Subsets: MEDLINE
Subject
Language
English
Abstract
Context: Chronic inflammation is a risk factor for diabetes, but it can also be a complication of diabetes, leading to severe diabetes and causing many other clinical manifestations. Inflammation is a major emerging complication in both type I and type II diabetes, which causes increasing interest in targeting inflammation to improve and control diabetes. Diabetes with insulin resistance and impaired glucose utilization in humans and their underlying mechanism is not fully understood. But a growing understanding of the intricacy of the insulin signaling cascade in diabetic inflammatory cells reveals potential target genes and their proteins responsible for severe insulin resistance. With this baseline concept, the current project explores the binding affinities of the hyaluronic acid anti-diabetic compounds conjugates to such target proteins in diabetic inflammatory cells and their molecular geometries. A range of 48 anti-diabetic compounds was screened against aldose reductase binding pocket 3 protein target through in silico molecular docking, and results revealed that three compounds viz, metformin (CID:4091), phenformin (CID:8249), sitagliptin (CID:4,369,359), possess significant binding affinity out of 48 chosen drugs. Further, these three anti-diabetic compounds were conjugated with hyaluronic acid (HA), and their binding affinity and their molecular geometrics towards aldose reductase enzyme were screened compared with the free form of the drug. The molecular geometries of three shortlisted drugs (metformin, phenformin, sitagliptin) and their HA conjugates were also explored through density functional theory studies, and it proves their good molecular geometry towards pocket 3 of aldose reductase target. Further, MD simulation trajectories affirm that HA conjugates possess good binding affinity and simulation trajectories with protein target aldose reductase than a free form of the drug. Our current study unravels the new mechanism of drug targeting for diabetes through HA conjugation for inflammatory diabetes. HA conjugates act as novel drug candidates for treating inflammatory diabetes; however, it needs further human clinical trials.
Methods: For ligand structure, PubChem, ACD chem sketch, and online structure file generator platform are utilized for ligand preparation. Target protein aldose reductase obtained from protein database (PDB). For molecular docking analysis, AutoDock Vina (Version 4) was utilized. pKCSM online server used to predict ADMET properties of the above three shortlisted drugs from the docking study. Using mol-inspiration software (version 2011.06), three shortlisted compounds' bioactivity scores were predicted. DFT analysis for three shortlisted anti-diabetic drugs and their hyaluronic acid conjugates were calculated using a functional B3LYP set of Gaussian 09 software. Molecular dynamics simulation calculations for six chosen protein-ligand complexes were done through YASARA dynamics software and AMBER14 force field.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)