학술논문

Antimicrobial resistance landscape in a metropolitan city context using open drain wastewater-based metagenomic analysis.
Document Type
Academic Journal
Author
Madhukar MK; Tata Institute for Genetics and Society, Bengaluru, 560065, India.; Singh N; Tata Institute for Genetics and Society, Bengaluru, 560065, India.; Iyer VR; Tata Institute for Genetics and Society, Bengaluru, 560065, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.; Sowpati DT; Centre for Cellular and Molecular Biology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.; Tallapaka KB; Centre for Cellular and Molecular Biology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.; Mishra RK; Tata Institute for Genetics and Society, Bengaluru, 560065, India; Centre for Cellular and Molecular Biology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address: rakesh.mishra@tigs.res.in.; Moharir SC; Tata Institute for Genetics and Society, Bengaluru, 560065, India; Centre for Cellular and Molecular Biology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address: shivranjani.c@tigs.res.in.
Source
Publisher: Elsevier Country of Publication: Netherlands NLM ID: 0147621 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1096-0953 (Electronic) Linking ISSN: 00139351 NLM ISO Abbreviation: Environ Res Subsets: MEDLINE
Subject
Language
English
Abstract
One Health concept recognizes the inextricable interactions of diverse ecosystems and their subsequent effect on human, animal and plant health. Antimicrobial resistance (AMR) is a major One Health concern and is predicted to cause catastrophes if appropriate measures are not implemented. To understand the AMR landscape in a south Indian metropolitan city, metagenomic analysis of open drains was performed. The data suggests that in January 2022, macrolide class of antibiotics contributed the highest resistance of 40.1% in the city, followed by aminoglycoside- 24.4%, tetracycline- 11.3% and lincosamide- 6.7%. The 'mutations in the 23S rRNA gene conferring resistance to macrolide antibiotics' were the major contributor of resistance with a prevalence of 39.7%, followed by '16s rRNA with mutation conferring resistance to aminoglycoside antibiotics'- 22.2%, '16S rRNA with mutation conferring resistance to tetracycline derivatives'- 9.2%, and '23S rRNA with mutation conferring resistance to lincosamide antibiotics'- 6.7%. The most prevalent antimicrobial resistance gene (ARG) 'mutations in the 23S rRNA gene conferring resistance to macrolide antibiotics' was present in multiple pathogens including Escherichia coli, Campylobacter jejuni, Acinetobacter baumannii, Streptococcus pneumoniae, Pseudomonas aeruginosa, Neisseria gonorrhoeae, Klebsiella pneumoniae and Helicobacter pylori. Most of the geographical locations in the city showed a similar landscape for AMR. Considering human mobility and anthropogenic activities, such an AMR landscape could be common across other regions too. The data indicates that pathogens are evolving and acquiring antibiotic resistance genes to evade antibiotics of multiple major drug classes in diverse hosts. The outcomes of the study are relevant not only in understanding the resistance landscape at a broader level but are also important for identifying the resistant drug classes, the mechanisms of gaining resistance and for developing new drugs that target specific pathways. This kind of surveillance protocol can be extended to regions in other developing countries to assess and combat the problem of antimicrobial resistance.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024. Published by Elsevier Inc.)