학술논문

Whole-cell bacterial biosensor with the capability to detect red palm weevil, Rhynchophorus ferrugineus, in date palm trees, Phoenix dactylifera: a proof of concept study.
Document Type
Academic Journal
Author
Harpaz D; Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel. Electronic address: dorin.harpaz@mail.huji.ac.il.; Veltman B; Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel. Electronic address: boris.veltman@mail.huji.ac.il.; Katz D; Eden Farm, Agricultural R&D center, Emek HaMa'ayanot Regional Council, Beit Shean Valley 171000, Israel. Electronic address: danielk@maianot.co.il.; Eltzov E; Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel. Electronic address: eltzov@volcani.agri.gov.il.
Source
Publisher: Elsevier Science Publishers Country of Publication: Netherlands NLM ID: 8411927 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1873-4863 (Electronic) Linking ISSN: 01681656 NLM ISO Abbreviation: J Biotechnol Subsets: MEDLINE
Subject
Language
English
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus, is considered a severe pest of palms. Usually, the early stages of infection are without visible signs. An attractive early sensing approach of non-visible infections is based on volatile organic compounds (VOCs). In this study, a whole-cell bacterial biosensor was used for the identification of RPW in date palm (Phoenix dactylifera). The cells are genetically modified to produce light in the presence of general stresses. The bioluminescent bacterial panel is based on three genetically engineered Escherichia coli strains that are sensitive to cytotoxicity (TV1061), genotoxicity (DPD2794), or quorum-sensing (K802NR). The bioluminescent bacterial panel detects the presence of VOCs and a change in the light signal is then generated, reflecting the health status of the date palm tree. The bioreporter bacteria cells are immobilized in calcium alginate tablets and placed in a sealed jar without direct contact with the tested sample, thereby exposing them only to the VOCs in the surrounding air. The immobilized bacteria cells were exposed to the air near infected by RPW or uninfected sugar canes, date palm tree pieces, and on date palm trees. Commercial plate reader was used for signal measurement. The findings show that quorum-sensing was induced by all the tested samples of infected sugar canes, date palm tree pieces, and date palm trees. While, cytotoxicity was induced only by infected date palm tree pieces, and genotoxicity was induced only by infected date palm trees. The bacterial monitoring results enable the identification of specific signatures that will allow a quick and accurate diagnosis.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2022 Elsevier B.V. All rights reserved.)