학술논문

A generic biokinetic model for carbon-14 labelled compounds.
Document Type
Theses
Source
Dissertation Abstracts International; Dissertation Abstract International; 71-10B.
Subject
Engineering, Nuclear
Language
English
Abstract
Summary: An improved model has been developed that includes and alimentary tract, a urinary bladder, CO2 model, and an "Other" compartment used to model systemic tissues. The model can be adapted to replicate any excretion curve and excretion pattern. In addition, the effective dose coefficient produced by the updated model is near the mean effective dose coefficient of carbon compounds that have been considered in this research. The major areas of improvement are: more anatomically significant, a less conservative dose coefficient, and the ability to manipulate the model for known excretion data. Due to the wide variety of carbon compounds, it is suggested that specific biokinetic models be implemented for known radiocarbon substances. If the source of radiocarbon is dietary, then the physiologically based model proposed by Whillans [102] that splits all ingested radiocarbon compounds into carbohydrates, fats, and proteins should be used.