학술논문

Process Study of Selective Laser Sintering of PS/GF/HGM Composites.
Document Type
Article
Source
Materials (1996-1944). Mar2024, Vol. 17 Issue 5, p1066. 14p.
Subject
*SELECTIVE laser sintering
*BENDING strength
*POLYSTYRENE
*HOLLOW fibers
*MICROBEADS
*GLASS fibers
Language
ISSN
1996-1944
Abstract
To address the issues of insufficient strength and poor precision in polystyrene forming parts during the selective laser sintering process, a ternary composite of polystyrene/glass fiber/hollow glass microbeads was prepared through co-modification by incorporating glass fiber and hollow glass microbeads into polystyrene using a mechanical mixing method. The bending strength and dimensional accuracy of the sintered composites were investigated by conducting an orthogonal test and analysis of variance to study the effects of laser power, scanning speed, scanning spacing, and delamination thickness. The process parameters were optimized and selected to determine the optimal combination. The results demonstrated that when considering bending strength and Z-dimensional accuracy as evaluation criteria for terpolymer sintered parts, the optimum process parameters are as follows: laser power of 24 W, scanning speed of 1600 mm/s, scanning spacing of 0.24 mm, and delamination thickness of 0.22 mm. Under these optimal process parameters, the bending strength of sintered parts reaches 6.12 MPa with a relative error in the Z-dimension of only 0.87%. The bending strength of pure polystyrene sintered parts is enhanced by 15.69% under the same conditions, while the relative error in the Z-dimension is reduced by 63.45%. It improves the forming strength and precision of polystyrene in the selective laser sintering process and achieves the effect of enhancement and modification, which provides a reference and a new direction for exploring polystyrene-based high-performance composites and expands the application scope of selective laser sintering technology. [ABSTRACT FROM AUTHOR]