학술논문

Early detection of doxorubicin-induced cardiotoxicity in rats by its cardiac metabolic signature assessed with hyperpolarized MRI.
Document Type
Article
Source
Communications Biology. 11/19/2020, Vol. 3 Issue 1, p1-10. 10p.
Subject
*DOXORUBICIN
*CARDIOTOXICITY
*CONGESTIVE heart failure
*MAGNETIC resonance imaging
*MITOCHONDRIA
Language
ISSN
2399-3642
Abstract
Doxorubicin (DOX) is a widely used chemotherapeutic agent that can cause serious cardiotoxic side effects culminating in congestive heart failure (HF). There are currently no clinical imaging techniques or biomarkers available to detect DOX-cardiotoxicity before functional decline. Mitochondrial dysfunction is thought to be a key factor driving functional decline, though real-time metabolic fluxes have never been assessed in DOX-cardiotoxicity. Hyperpolarized magnetic resonance imaging (MRI) can assess real-time metabolic fluxes in vivo. Here we show that cardiac functional decline in a clinically relevant rat-model of DOX-HF is preceded by a change in oxidative mitochondrial carbohydrate metabolism, measured by hyperpolarized MRI. The decreased metabolic fluxes were predominantly due to mitochondrial loss and additional mitochondrial dysfunction, and not, as widely assumed hitherto, to oxidative stress. Since hyperpolarized MRI has been successfully translated into clinical trials this opens up the potential to test cancer patients receiving DOX for early signs of cardiotoxicity. Using hyperpolarized 13C magnetic resonance imaging (MRI), Timm et al. show that a change in oxidative mitochondrial carbohydrate metabolism precedes cardiac decline in a rat model of heart failure induced by doxorubicin (DOX), a widely used chemotherapeutic agent. This study suggests the possibility of using hyperpolarized MRI to test cancer patients receiving DOX for early signs of cardiotoxicity. [ABSTRACT FROM AUTHOR]