학술논문

Are there reliable multiparametric MRI criteria for differential diagnosis between intracranial meningiomas and solitary intracranial dural metastases?
Document Type
Article
Source
Oncology Letters. Aug2023, Vol. 26 Issue 2, p1-15. 15p.
Subject
*DIFFERENTIAL diagnosis
*BRAIN tumors
*HEALTH facilities
*RECEIVER operating characteristic curves
*MAGNETIC resonance imaging
CENTRAL nervous system tumors
Language
ISSN
1792-1074
Abstract
Intracranial meningiomas are the most common tumors of the central nervous system (CNS). Meningiomas account for up to 36% of all brain tumors. The incidence of metastatic brain lesions has not been determined. Up to 30% of adult patients with cancer of one localization or another suffer from a secondary tumor lesion of the brain. The vast majority of meningiomas have meningeal localization; >90% are solitary. The incidence of intracranial dural metastases (IDM) is 8-9% of cases, while in 10% of cases, the brain is the only localization, and in 50% of cases the metastases are solitary. Typically, the task of distinguishing between meningioma and dural metastasis does not involve difficulties. Periodically, there is a situation when the differential diagnosis between these tumors is ambiguous, since meningiomas and solitary IDM may have similar characteristics, in particular, a cavity-less solid structure, limited diffusion of water molecules, the presence of extensive peritumoral edema, and an identical contrast pattern. The present study included 100 patients with newly diagnosed tumors of the CNS, who subsequently underwent examination and neurosurgical treatment at the Federal Center for Neurosurgery with histological verification between May 2019 and October 2022. Depending on the histological conclusion, two study groups of patients were distinguished: The first group consisted of patients diagnosed with intracranial meningiomas (n=50) and the second group of patients were diagnosed with IDM (n=50). The study was performed using a magnetic resonance imaging (MRI) General Electric Discovery W750 3T before and after contrast enhancement. The diagnostic value of this study was estimated using Receiver Operating Characteristic curve and area under the curve analysis. Based on the results of the study, it was found that the use of multiparametric MRI (mpMRI) in the differential diagnosis of intracranial meningiomas and IDM was limited by the similarity of the values of the measured diffusion coefficient. The assumption, previously put forward in the literature, regarding the presence of a statistically significant difference in the apparent diffusion coefficient values, which make it possible to differentiate tumors, was not confirmed. When analyzing perfusion data, IDM showed higher cerebral blood flow (CBF) values compared with intracranial meningiomas (P=0.001). A threshold value of the CBF index was revealed, which was 217.9 ml/100 g/min, above which it is possible to predict IDM with a sensitivity and specificity of 80.0 and 86.0%, respectively. Diffusion-weighted images are not reliable criteria for differentiating intracranial meningiomas from IDM and should not influence the diagnosis suggested by imaging. The technique for assessing the perfusion of a meningeal lesion makes it possible to predict metastases with a sensitivity and specificity close to 80-90% and deserves attention when making a diagnosis. In the future, in order to reduce the number of false negative and false positive results, mpMRI would require additional criteria to be included in the protocol. Since IDM differs from intracranial meningiomas in the severity of neoangiogenesis and, accordingly, in greater vascular permeability, the technique for assessing vascular permeability (wash-in parameter with dynamic contrast enhancement) may serve as a refining criterion for distinguishing between dural lesions. [ABSTRACT FROM AUTHOR]