학술논문

The tetrameric pheromone module SteC‐MkkB‐MpkB‐SteD regulates asexual sporulation, sclerotia formation and aflatoxin production in Aspergillus flavus.
Document Type
Article
Source
Cellular Microbiology. Jun2020, Vol. 22 Issue 6, p1-14. 14p.
Subject
*ASPERGILLUS flavus
*PHEROMONES
*FUNGAL metabolites
*MITOGEN-activated protein kinases
*METABOLITES
*ASPERGILLUS nidulans
*SECONDARY metabolism
*PATHOGENIC fungi
Language
ISSN
1462-5814
Abstract
For eukaryotes like fungi to regulate biological responses to environmental stimuli, various signalling cascades are utilized, like the highly conserved mitogen‐activated protein kinase (MAPK) pathways. In the model fungus Aspergillus nidulans, a MAPK pathway known as the pheromone module regulates development and the production of secondary metabolites (SMs). This pathway consists five proteins, the three kinases SteC, MkkB and MpkB, the adaptor SteD and the scaffold HamE. In this study, homologs of these five pheromone module proteins have been identified in the plant and human pathogenic fungus Aspergillus flavus. We have shown that a tetrameric complex consisting of the three kinases and the SteD adaptor is assembled in this species. It was observed that this complex assembles in the cytoplasm and that MpkB translocates into the nucleus. Deletion of steC, mkkB, mpkB or steD results in abolishment of both asexual sporulation and sclerotia production. This complex is required for the positive regulation of aflatoxin production and negative regulation of various SMs, including leporin B and cyclopiazonic acid (CPA), likely via MpkB interactions in the nucleus. These data highlight the conservation of the pheromone module in Aspergillus species, signifying the importance of this pathway in regulating fungal development and secondary metabolism. [ABSTRACT FROM AUTHOR]