학술논문

Effect of Magnesium Sulfate Solution on Pore Structure of Ionic Rare Earth Ore during Leaching Process.
Document Type
Article
Source
Minerals (2075-163X). Feb2023, Vol. 13 Issue 2, p294. 14p.
Subject
*POROSITY
*IONIC structure
*MAGNESIUM sulfate
*RARE earth metals
*ELECTRIC double layer
*LEACHING
Language
ISSN
2075-163X
Abstract
During in situ leaching of ionic rare earth ore, the pore structure of the orebody changes due to the chemical replacement reaction between the leaching agent and the rare earth ore. To explore the influence of leaching agents on the pore structure of ionic rare earth ore during the leaching process, magnesium sulfate solutions with different concentrations and pH are used as leaching agents in this paper. An experimental method of indoor simulated column leaching, a Zetaprobe potential analyzer, and an NM-60 rock microstructure analyzer to measure parameters, including surface zeta potential, T2 map, and the pore structure of rare-earth ore particles, were used to analyze the influence law of magnesium sulfate solution on the pore structure of ionic rare earth ore. The result proves that pure H2O leaching has little effect on the surface Zeta potential and the internal pore structure of the ore particles. In the leaching process of magnesium sulfate solutions with different concentrations, the absolute value of Zeta potential decreases, and the internal pore structure evolves from medium, large, and extra-large to small pores. In the leaching process of magnesium sulfate solutions with different pH, the absolute value of Zeta potential decreases and then increases slightly with the end of the ion exchange reaction. The internal pore structure generally shows a decrease in the number of small and extra-large pores and an increase in the number of medium and large pores. According to the analysis, the concentration and pH of the leaching agent cause the change of thickness of the electric double layer of the fine particles in the orebody, break the balance of interaction force between soil particles, and result in the evolution of a micropore structure of orebody during leaching. [ABSTRACT FROM AUTHOR]