학술논문

The reactions of N3P3Cl6 with monodentate and bidentate ligands: the syntheses and structural characterizations, in vitro antimicrobial activities, and DNA interactions of 4-fluorobenzyl(N/O)spirocyclotriphosphazenes.
Document Type
Article
Source
Turkish Journal of Chemistry. 2017, Vol. 41 Issue 4, p525-547. 23p.
Subject
*LIGANDS (Chemistry)
*DIAMINES
*GLYCOLS
*GRAM-negative bacteria
*FIBROBLASTS
Language
ISSN
1300-0527
Abstract
The Cl replacement reactions of 4-fluorobenzyl(N/O)spirocyclotriphosphazene (2) with excess monoamines led to the formation of 4-fluorobenzylspiro(N/O)tetraaminocyclotriphosphazenes (2a-2d). The partly substituted dispiro 3b and dispiro 3c and fully substituted trispirocyclotriphosphazenes (trans 4a, cis 4c, 4d, and 4e) were obtained, respectively, from the reactions of 2 with one equimolar and two equimolar amounts of diamines, aminoalcohol, and diols. Although efforts were made for the separation of the cis/trans and optical isomers of the dispiro phosphazenes, only one set of diastereomers (RR/RS or SS/SR) of dispiro 3b and dispiro 3c was isolated, respectively. The 31P NMR spectral data of the other dispiro phosphazenes were evaluated from the 31P NMR spectra of the reaction mixtures. The reactions of 2 with excess N-methylethylenediamine gave trans 4a as a racemic mixture. While trans 4b (racemic) and cis 4b (meso) occurred from the reaction of 2 with excess N-methyl-1,3-propanediamine, they were not isolated separately. Some of the phosphazenes were screened against bacteria and fungi. The activities of the compounds against anaerobic and microaerophilic gram-negative bacteria were evaluated. It was found that compounds 2, 2b, and trans 4a exhibited tolerable toxic effects on fibroblast cells and had the highest toxicity against MCF-7 cells. [ABSTRACT FROM AUTHOR]