학술논문

Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism.
Document Type
Article
Source
Nature Chemical Biology. Oct2013, Vol. 9 Issue 10, p623-629. 7p. 1 Color Photograph, 4 Diagrams, 1 Graph.
Subject
*MOLECULAR self-assembly
*AEROLYSIN
*X-ray crystallography
*MOLECULAR dynamics
*MOLECULAR structure
*MONOMERS
Language
ISSN
1552-4450
Abstract
Aerolysin is the founding member of a superfamily of β-pore-forming toxins whose pore structure is unknown. We have combined X-ray crystallography, cryo-EM, molecular dynamics and computational modeling to determine the structures of aerolysin mutants in their monomeric and heptameric forms, trapped at various stages of the pore formation process. A dynamic modeling approach based on swarm intelligence was applied, whereby the intrinsic flexibility of aerolysin extracted from new X-ray structures was used to fully exploit the cryo-EM spatial restraints. Using this integrated strategy, we obtained a radically new arrangement of the prepore conformation and a near-atomistic structure of the aerolysin pore, which is fully consistent with all of the biochemical data available so far. Upon transition from the prepore to pore, the aerolysin heptamer shows a unique concerted swirling movement, accompanied by a vertical collapse of the complex, ultimately leading to the insertion of a transmembrane β-barrel. [ABSTRACT FROM AUTHOR]