학술논문

VGsim: Scalable viral genealogy simulator for global pandemic.
Document Type
Article
Source
PLoS Computational Biology. 8/24/2022, Vol. 18 Issue 8, p1-15. 15p. 1 Diagram, 4 Charts.
Subject
*GENEALOGY
*TECHNOLOGICAL innovations
*PANDEMICS
*EPIDEMIOLOGICAL models
*COVID-19 pandemic
Language
ISSN
1553-734X
Abstract
Accurate simulation of complex biological processes is an essential component of developing and validating new technologies and inference approaches. As an effort to help contain the COVID-19 pandemic, large numbers of SARS-CoV-2 genomes have been sequenced from most regions in the world. More than 5.5 million viral sequences are publicly available as of November 2021. Many studies estimate viral genealogies from these sequences, as these can provide valuable information about the spread of the pandemic across time and space. Additionally such data are a rich source of information about molecular evolutionary processes including natural selection, for example allowing the identification of new variants with transmissibility and immunity evasion advantages. To our knowledge, there is no framework that is both efficient and flexible enough to simulate the pandemic to approximate world-scale scenarios and generate viral genealogies of millions of samples. Here, we introduce a new fast simulator VGsim which addresses the problem of simulation genealogies under epidemiological models. The simulation process is split into two phases. During the forward run the algorithm generates a chain of population-level events reflecting the dynamics of the pandemic using an hierarchical version of the Gillespie algorithm. During the backward run a coalescent-like approach generates a tree genealogy of samples conditioning on the population-level events chain generated during the forward run. Our software can model complex population structure, epistasis and immunity escape. Author summary: We develop a fast and flexible simulation software package VGsim for modeling epidemiological processes and generating genealogies of large pathogen samples. The software takes into account host population structure, pathogen evolution, host immunity and some other epidemiological aspects. The computational efficiency of the package allows to simulate genealogies of tens of millions of samples, which is important, e.g., for SARS-CoV-2 genome studies. [ABSTRACT FROM AUTHOR]