학술논문

The Role of CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 Ligands in Molecular Cancer Processes and Clinical Aspects of Acute Myeloid Leukemia (AML).
Document Type
Article
Source
Cancers. Sep2023, Vol. 15 Issue 18, p4555. 22p.
Subject
*CLINICAL pathology
*CARCINOGENS
*CARDIOVASCULAR system physiology
*GENETIC mutation
*NEOVASCULARIZATION
*IMMUNOLOGIC receptors
*OSTEOBLASTS
*MACROPHAGES
*CELL proliferation
*EXTRAMEDULLARY diseases
*CHEMOKINES
*BONE marrow
*LIGANDS (Biochemistry)
*ONCOGENIC viruses
Language
ISSN
2072-6694
Abstract
Simple Summary: AML is a type of leukemia with a very unfavorable prognosis. Some of the new therapeutic targets that are being investigated by researchers worldwide are chemokines of the CXC subfamily, which includes CXCL12. Although this chemokine has been very well studied, other CXC chemokines has been less frequently examined in AML. There is also a lack of a review summarizing the role of CXC chemokines other than CXCL12 in AML. For this reason, this review describes the significance of the ligands for receptors CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 in AML. The focus is on clinical aspects as well as molecular cancer processes in AML. Acute myeloid leukemia (AML) is a type of leukemia known for its unfavorable prognoses, prompting research efforts to discover new therapeutic targets. One area of investigation involves examining extracellular factors, particularly CXC chemokines. While CXCL12 (SDF-1) and its receptor CXCR4 have been extensively studied, research on other CXC chemokine axes in AML is less developed. This study aims to bridge that gap by providing an overview of the significance of CXC chemokines other than CXCL12 (CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 ligands and CXCL14 and CXCL17) in AML's oncogenic processes. We explore the roles of all CXC chemokines other than CXCL12, in particular CXCL1 (Gro-α), CXCL8 (IL-8), CXCL10 (IP-10), and CXCL11 (I-TAC) in AML tumor processes, including their impact on AML cell proliferation, bone marrow angiogenesis, interaction with non-leukemic cells like MSCs and osteoblasts, and their clinical relevance. We delve into how they influence prognosis, association with extramedullary AML, induction of chemoresistance, effects on bone marrow microvessel density, and their connection to French–American–British (FAB) classification and FLT3 gene mutations. [ABSTRACT FROM AUTHOR]