학술논문

Optimized phase compositions and microwave dielectric properties of low loss Ca2Sn2Al2O9‐based ceramics by M4+ substitution.
Document Type
Article
Source
Journal of the American Ceramic Society. May2023, Vol. 106 Issue 5, p2941-2952. 12p. 1 Color Photograph, 3 Charts, 5 Graphs.
Subject
*DIELECTRIC properties
*PHASE transitions
*CERAMICS
*MICROWAVES
*SPACE groups
*ALKALINE earth metals
Language
ISSN
0002-7820
Abstract
The traditional solid‐state reaction method was used to prepare Ca2Sn2−xMxAl2O9 (M = Ti, Zr, and Hf) ceramics. Then, the impact of an M4+ substitution of Sn4+ on the phase transition, crystal structural parameter, and microwave dielectric properties of Ca2Sn2−xMxAl2O9 (0 ≤ x ≤ 0.4) ceramics were investigated. Ti4+ could not replace the Sn4+ of Ca2Sn2Al2O9 due to its small ionic radius, and the Al‐based second phases of Ca2Sn2−xTixAl2O9 ceramics were confirmed by the X‐ray diffractometer and EDS map scanning results. With the Zr4+ and Hf4+ substitutions of Sn4+, the SnO2 and CaSnO3 second phases of Ca2Sn2Al2O9 ceramic were inhibited, and the Ca2Sn2−xMxAl2O9 (M = Zr and Hf) (0.05 ≤ x ≤ 0.2) single‐phase ceramics with orthorhombic structure (Pbcn space group) were obtained. New MO2 (M = Zr and Hf) and CaAl2O4 second phases appeared in the Ca2Sn2−xMxAl2O9 (M = Zr and Hf) (0.3 ≤ x ≤ 0.4) ceramics, and their contents increased gradually with the increase in x. The Ca2Sn2−xMxAl2O9 (M = Zr and Hf) (0.05 ≤ x ≤ 0.2) ceramics exhibited high Q × f because of their pure phase compositions, and the Q × f of Ca2Sn2Al2O9 ceramic was improved to 77 800 GHz (12.6 GHz) in the Ca2Sn1.9Zr0.1Al2O9 ceramic. The Q × f values of Ca2Sn2−xMxAl2O9 single‐phase ceramics were mainly controlled by rc (Sn/M–O) and rc (Al–O). The τf values of single‐phase Ca2Sn2−xMxAl2O9 ceramics were related to octahedral distortions. The Zr4+ and Hf4+ substitution of Sn4+ optimized the phase compositions and microwave dielectric properties of the Ca2Sn2−xMxAl2O9 ceramics, and the Ca2Sn1.9Zr0.1Al2O9 ceramic sintered at optimal temperature exhibited excellent microwave dielectric properties (εr = 8.67, Q × f = 77 800 GHz at 12.6 GHz and τf = −69.8 ppm/°C). [ABSTRACT FROM AUTHOR]