학술논문

Klebsiella quasipneumoniae in intestine damages bile acid metabolism in hematopoietic stem cell transplantation patients with bloodstream infection.
Document Type
Article
Source
Journal of Translational Medicine. 3/29/2023, Vol. 21 Issue 1, p1-15. 15p.
Subject
*HEMATOPOIETIC stem cell transplantation
*FARNESOID X receptor
*BILE acids
*KLEBSIELLA
*CHOLIC acid
*GUT microbiome
Language
ISSN
1479-5876
Abstract
Background: Bloodstream infection (BSI) is a serious hematopoietic stem cell transplantation (HSCT) complication. The intestinal microbiome regulates host metabolism and maintains intestinal homeostasis. Thus, the impact of microbiome on HSCT patients with BSI is essential. Methods: Stool and serum specimens of HSCT patients were prospectively collected from the pretransplant conditioning period till 4 months after transplantation. Specimens of 16 patients without BSI and 21 patients before BSI onset were screened for omics study using 16S rRNA gene sequencing and untargeted metabolomics. The predictive infection model was constructed using LASSO and the logistic regression algorithm. The correlation and influence of microbiome and metabolism were examined in mouse and Caco-2 cell monolayer models. Results: The microbial diversity and abundance of Lactobacillaceae were remarkably reduced, but the abundance of Enterobacteriaceae (especially Klebsiella quasipneumoniae) was significantly increased in the BSI group before onset, compared with the non-BSI group. The family score of microbiome features (Enterobacteriaceae and Butyricicoccaceae) could highly predict BSI (AUC = 0.879). The serum metabolomic analysis showed that 16 differential metabolites were mainly enriched in the primary bile acid biosynthesis pathway, and the level of chenodeoxycholic acid (CDCA) was positively correlated with the abundance of K. quasipneumoniae (R = 0.406, P = 0.006). The results of mouse experiments confirmed that three serum primary bile acids levels (cholic acid, isoCDCA and ursocholic acid), the mRNA expression levels of bile acid farnesol X receptor gene and apical sodium-dependent bile acid transporter gene in K. quasipneumoniae colonized mice were significantly higher than those in non-colonized mice. The intestinal villus height, crypt depth, and the mRNA expression level of tight junction protein claudin-1 gene in K. quasipneumoniae intestinal colonized mice were significantly lower than those in non-colonized mice. In vitro, K. quasipneumoniae increased the clearance of FITC-dextran by Caco-2 cell monolayer. Conclusions: This study demonstrated that the intestinal opportunistic pathogen, K. quasipneumoniae, was increased in HSCT patients before BSI onset, causing increased serum primary bile acids. The colonization of K. quasipneumoniae in mice intestines could lead to mucosal integrity damage. The intestinal microbiome features of HSCT patients were highly predictive of BSI and could be further used as potential biomarkers. [ABSTRACT FROM AUTHOR]