학술논문

Anti-Inflammatory Peroxidized Chlorahololide-Type Dimers Are Artifacts of Shizukaol-Type Dimers: From Phenomena Discovery and Confirmation to Potential Underlying Mechanism.
Document Type
Article
Source
Molecules. Feb2024, Vol. 29 Issue 4, p909. 12p.
Subject
*FRONTIER orbitals
*PEROXIDES
*DIMERS
*MOLECULAR orbitals
Language
ISSN
1420-3049
Abstract
In our research on naturally occurring sesquiterpenes, eight shizukaol-type dimers, one chlorahololide-type dimer, and one sarcanolide-type dimer were isolated from the roots of Chloranthus fortunei. As the project was implemented, we accidentally discovered that shizukaol-type dimers can be converted into peroxidized chlorahololide-type dimers. This potential change was discovered after simulations of the changes in corresponding shizukaols showed that three peroxide products were generated (1–3), indicating that peroxidation reactions occurred. HPLC-HR-MS analysis results obtained for the shizukaol derivatives further demonstrate that the reaction occurred, and the type of substituent of small organic ester moieties at positions C-15' and C-13' of unit B were not decisively related to the reaction. Quantum chemical calculations of the mode dimer further demonstrated this phenomenon. The highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) energy of the precursor and production revealed the advantageous yield of 4β-hydroperoxyl production. Additionally, the potential reaction mechanism was speculated and validated using the free energy in the reaction which successfully explained the feasibility of the reaction. Finally, the anti-inflammatory activity of the precursors and products was evaluated, and the products of peroxidation showed better anti-inflammatory activity. [ABSTRACT FROM AUTHOR]