학술논문

A non-genetic engineering platform for rapidly generating and expanding cancer-specific armed T cells.
Document Type
Article
Source
Journal of Biomedical Science. 5/31/2023, Vol. 30 Issue 1, p1-19. 19p.
Subject
*T cells
*MONONUCLEAR leukocytes
*SEVERE combined immunodeficiency
*CYTOKINE release syndrome
*T cell differentiation
*GENE transfection
Language
ISSN
1021-7770
Abstract
Background: Cancer-specific adoptive T cell therapy has achieved successful milestones in multiple clinical treatments. However, the commercial production of cancer-specific T cells is often hampered by laborious cell culture procedures, the concern of retrovirus-based gene transfection, or insufficient T cell purity. Methods: In this study, we developed a non-genetic engineering technology for rapidly manufacturing a large amount of cancer-specific T cells by utilizing a unique anti-cancer/anti-CD3 bispecific antibody (BsAb) to directly culture human peripheral blood mononuclear cells (PBMCs). The anti-CD3 moiety of the BsAb bound to the T cell surface and stimulated the differentiation and proliferation of T cells in PBMCs. The anti-cancer moiety of the BsAb provided these BsAb-armed T cells with the cancer-targeting ability, which transformed the naïve T cells into cancer-specific BsAb-armed T cells. Results: With this technology, a large amount of cancer-specific BsAb-armed T cells can be rapidly generated with a purity of over 90% in 7 days. These BsAb-armed T cells efficiently accumulated at the tumor site both in vitro and in vivo. Cytotoxins (perforin and granzyme) and cytokines (TNF-α and IFN-γ) were dramatically released from the BsAb-armed T cells after engaging cancer cells, resulting in a remarkable anti-cancer efficacy. Notably, the BsAb-armed T cells did not cause obvious cytokine release syndrome or tissue toxicity in SCID mice bearing human tumors. Conclusions: Collectively, the BsAb-armed T cell technology represents a simple, time-saving, and highly safe method to generate highly pure cancer-specific effector T cells, thereby providing an affordable T cell immunotherapy to patients. [ABSTRACT FROM AUTHOR]