학술논문

Impaired function and delayed regeneration of dendritic cells in COVID-19.
Document Type
Article
Source
PLoS Pathogens. 10/6/2021, Vol. 17 Issue 10, p1-30. 30p.
Subject
*MONOCYTES
*COVID-19
*PROGRAMMED death-ligand 1
*DENDRITIC cells
*T helper cells
*T cells
*COVID-19 treatment
*VIRUS diseases
Language
ISSN
1553-7366
Abstract
Disease manifestations in COVID-19 range from mild to severe illness associated with a dysregulated innate immune response. Alterations in function and regeneration of dendritic cells (DCs) and monocytes may contribute to immunopathology and influence adaptive immune responses in COVID-19 patients. We analyzed circulating DC and monocyte subsets in 65 hospitalized COVID-19 patients with mild/moderate or severe disease from acute illness to recovery and in healthy controls. Persisting reduction of all DC subpopulations was accompanied by an expansion of proliferating Lineage−HLADR+ cells lacking DC markers. Increased frequency of CD163+ CD14+ cells within the recently discovered DC3 subpopulation in patients with more severe disease was associated with systemic inflammation, activated T follicular helper cells, and antibody-secreting cells. Persistent downregulation of CD86 and upregulation of programmed death-ligand 1 (PD-L1) in conventional DCs (cDC2 and DC3) and classical monocytes associated with a reduced capacity to stimulate naïve CD4+ T cells correlated with disease severity. Long-lasting depletion and functional impairment of DCs and monocytes may have consequences for susceptibility to secondary infections and therapy of COVID-19 patients. Author summary: Dendritic cells (DCs) recognize viral infections and trigger innate and adaptive antiviral immunity. COVID-19 severity is greatly influenced by the host immune response and modulation of DC generation and function after SARS-CoV-2 infection could play an important role in this disease. This study identifies a long-lasting reduction of DCs in the blood of COVID-19 patients and a functional impairment of these cells. Downregulation of costimulatory molecule CD86 and upregulation of inhibitory molecule PD-L1 in conventional DCs correlated with disease severity and were accompanied by a reduced ability to stimulate T cells. A higher frequency of CD163+ CD14+ cells in the DC3 subpopulation correlated with systemic inflammation suggesting that these cells may play a role in inflammatory responses of COVID-19 patients. Depletion and functional impairment of DCs beyond the acute phase of the disease may have consequences for susceptibility to secondary infections and clinical management of COVID-19 patients. [ABSTRACT FROM AUTHOR]