학술논문

Differing structures of galactoglucomannan in eudicots and non-eudicot angiosperms.
Document Type
Article
Source
PLoS ONE. 12/21/2023, Vol. 18 Issue 12, p1-17. 17p.
Subject
*EUDICOTS
*CHROMOSOME duplication
*PLANT evolution
*ROOT growth
*CELL anatomy
Language
ISSN
1932-6203
Abstract
The structures of cell wall mannan hemicelluloses have changed during plant evolution. Recently, a new structure called β-galactoglucomannan (β-GGM) was discovered in eudicot plants. This galactoglucomannan has β-(1,2)-Gal-α-(1,6)-Gal disaccharide branches on some mannosyl residues of the strictly alternating Glc-Man backbone. Studies in Arabidopsis revealed β-GGM is related in structure, biosynthesis and function to xyloglucan. However, when and how plants acquired β-GGM remains elusive. Here, we studied mannan structures in many sister groups of eudicots. All glucomannan structures were distinct from β-GGM. In addition, we searched for candidate mannan β-galactosyltransferases (MBGT) in non-eudicot angiosperms. Candidate AtMBGT1 orthologues from rice (OsGT47A-VII) and Amborella (AtrGT47A-VII) did not show MBGT activity in vivo. However, the AtMBGT1 orthologue from rice showed MUR3-like xyloglucan galactosyltransferase activity in complementation analysis using Arabidopsis. Further, reverse genetic analysis revealed that the enzyme (OsGT47A-VII) contributes to proper root growth in rice. Together, gene duplication and diversification of GT47A-VII in eudicot evolution may have been involved in the acquisition of mannan β-galactosyltransferase activity. Our results indicate that β-GGM is likely to be a eudicot-specific mannan. [ABSTRACT FROM AUTHOR]