학술논문

Sphingomyelin Phosphodiesterase Acid-Like 3b is Essential for Toll-Like Receptor 3 Signaling in Human Podocytes.
Document Type
Article
Source
Journal of Membrane Biology. Feb2022, Vol. 255 Issue 1, p117-122. 6p.
Subject
*SPHINGOMYELINASE
*TOLL-like receptors
*DIABETIC nephropathies
*FOCAL segmental glomerulosclerosis
*SMALL interfering RNA
Language
ISSN
0022-2631
Abstract
Recent studies have revealed the importance of cell membrane stability in normal cell function. Sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b), a lipid modifying enzyme that converts sphingomyelin to ceramide in the cell membrane, is expressed in macrophages and regulates Toll-like receptor (TLR) 4 signaling by altering cell membrane fluidity. SMPDL3b is also expressed in human podocytes, which are involved in the pathogenesis of several glomerular diseases such as diabetic kidney disease, focal segmental glomerulosclerosis, and idiopathic nephrotic syndrome in children; however, the role of SMPDL3b in podocyte innate immunity is unclear. As podocytes are equipped with innate immune systems including TLR3, and viral infections often exacerbate proteinuria in children with idiopathic nephrotic syndrome, we hypothesized that changes in SMPDL3b expression levels could affect anti-viral responses via TLR3 signaling in podocytes, consequently impairing normal podocyte function. To examine the role of SMPDL3b in TLR3 signaling in podocytes, we treated conditionally immortalized human podocytes with polyinosinic–polycytidylic acid (poly IC), to activate TLR3 signaling. The cells were then transfected with small interfering RNA against SMPDL3b. Poly IC activated the TLR3 pathway, whereas knockdown of SMPDL3b attenuated poly IC-induced interferon-β/chemokine C–X–C ligand 10 expression in podocytes. To our knowledge, this is the first report demonstrating SMPDL3b involvement in podocyte innate immunity; these results suggest that SMPDL3b is essential for adequate anti-viral responses in podocytes, possibly by modulating lipid metabolism in the cell membrane. [ABSTRACT FROM AUTHOR]