학술논문

Recent evolution of 129I levels in the Nordic Seas and the North Atlantic Ocean.
Document Type
Article
Source
Science of the Total Environment. Apr2018, Vol. 621, p376-386. 11p.
Subject
*RADIOISOTOPES
*RADIOACTIVE tracers
*WATER masses
*MARINE radioecology
*SEAS
Language
ISSN
0048-9697
Abstract
Most of the anthropogenic radionuclide 129 I released to the marine environment from the nuclear fuel reprocessing plants (NFRP) at Sellafield (England) and La Hague (France) is transported to the Arctic Ocean via the North Atlantic Current and the Norwegian Coastal Current. 129 I concentrations in seawater provides a powerful and well-established radiotracer technique to provide information about the mechanisms which govern water mass transport in the Nordic Seas and the Arctic Ocean and is gaining importance when coupled with other tracers (e.g. CFC, 236 U). In this work, 129 I concentrations in surface and depth profiles from the Nordic Seas and the North Atlantic (NA) Ocean collected from four different cruises between 2011 and 2012 are presented. This work allowed us to i) update information on 129 I concentrations in these areas, required for the accurate use of 129 I as a tracer of water masses; and ii) investigate the formation of deep water currents in the eastern part of the Nordic Seas, by the analysis of 129 I concentrations and temperature-salinity (T-S) diagrams from locations within the Greenland Sea Gyre. In the Nordic Seas, 129 I concentrations in seawater are of the order of 10 9 at·kg − 1 , one or two orders of magnitude higher than those measured at the NA Ocean, not so importantly affected by the releases from the NFRP. 129 I concentrations of the order of 10 8 atoms·kg − 1 at the Ellet Line and the PAP suggest a direct contribution from the NFRP in the NA Ocean. An increase in the concentrations in the Nordic Seas between 2002 and 2012 has been detected, which agrees with the temporal evolution of the 129 I liquid discharges from the NFRPs in years prior to this. Finally, 129 I profile concentrations, 129 I inventories and T-S diagrams suggest that deep water formation occurred in the easternmost area of the Nordic Seas during 2012. [ABSTRACT FROM AUTHOR]