학술논문

Petrogenesis of Silicic Magmas in Iceland through Space and Time: The Isotopic Record Preserved in Zircon and Whole Rocks.
Document Type
Article
Source
Journal of Geology. Jan2020, Vol. 128 Issue 1, p1-28. 28p. 4 Graphs, 11 Maps.
Subject
*ZIRCON
*MAGMAS
*SPACETIME
*PETROGENESIS
*ISLAND arcs
*VOLCANOES
*GEODIVERSITY
Language
ISSN
0022-1376
Abstract
Iceland exemplifies the potential for generation of abundant silicic magma in the absence of mature island arc or preexisting continental crust. Zircon ages (U-Th and U-Pb) and isotope compositions (Hf and O), combined with whole-rock isotope data (Nd, Hf, Pb), provide insight into the petrogenesis and mantle heritage of these silicic magmas. Zircon and whole-rock samples represent the past 15 Ma of Iceland's geologic evolution, geographic extent (marginal fjordlands to neovolcanic zones), and modern tectonic settings (on-rift, propagating-rift, off-rift). The generation of Icelandic silicic magma has been influenced by hydrothermally altered crust, via assimilation and/or anatexis, throughout Iceland's history. This is shown by consistently depleted O isotopes in zircon (median δ18O +3.1‰; >98% below +5.3‰), and silicic rocks. Zircon δ18O values appear to have become lower and more diverse since ca. 0.7 Ma (median +1.9‰). This decrease may reflect lower δ18O of meteoric waters involved in hydrothermal alteration during the Pleistocene and/or more volumetrically significant contributions from low δ18O altered crust. Zircon O compositions from historically active volcanoes confirm that the role of altered crust is greater in on-rift than in off-rift settings; diversity in δ18O at volcanoes in propagating rift settings suggests highly variable contributions from altered crust. The silicic record (whole-rock and zircon) exhibits a correlation between geographic position and isotope composition that seems to be independent of local tectonic setting. Silicic samples of all ages collected above 65° N have more radiogenic whole-rock Hf and Nd isotopic compositions, and less radiogenic Pb, than samples collected in southern Iceland; published isotopic data for basalts suggest a similar time-independent latitudinal trend. The persistence of this trend through time suggests that northern Iceland has been underlain by a more depleted mantle source than southern Iceland throughout the island's history. [ABSTRACT FROM AUTHOR]