학술논문

Plastic changes at corticostriatal synapses predict improved motor function in a partial lesion model of Parkinson’s disease.
Document Type
Article
Source
Brain Research Bulletin. Apr2017, Vol. 130, p257-267. 11p.
Subject
*MOTOR ability
*PARKINSON'S disease
*DOPAMINE
*LACTACYSTIN
*PROTEASOME inhibitors
*LABORATORY mice
Language
ISSN
0361-9230
Abstract
In Parkinson’s disease, striatal dopamine depletion leads to plastic changes at excitatory corticostriatal and thalamostriatal synapses. The functional consequences of these responses on the expression of behavioral deficits are incompletely understood. In addition, most of the information on striatal synaptic plasticity has been obtained in models with severe striatal dopamine depletion, and less is known regarding changes during early stages of striatal denervation. Using a partial model of nigral cell loss based on intranigral injection of the proteasome inhibitor lactacystin, we demonstrate ultrastructural changes at corticostriatal synapses with a 15% increase in the length and 30% increase in the area of the postsynaptic densities at corticostriatal synapses 1 week following toxin administration. This increase was positively correlated with the performance of lactacystin-lesioned mice on the rotarod task, such that mice with a greater increase in the size of the postsynaptic density performed better on the rotarod task. We therefore propose that lengthening of the postsynaptic density at corticostriatal synapses acts as a compensatory mechanism to maintain motor function under conditions of partial dopamine depletion. The ultrastructure of thalamostriatal synapses remained unchanged following lactacystin administration. Our findings provide novel insights into the mechanisms of synaptic plasticity and behavioral compensation following partial loss of substantia nigra pars compacta neurons, such as those occurring during the early stages of Parkinson’s disease. [ABSTRACT FROM AUTHOR]