학술논문

Substrate-targeting γ-secretase modulators.
Document Type
Article
Source
Nature. 6/12/2008, Vol. 453 Issue 7197, p925-929. 5p. 4 Graphs.
Subject
*LETTERS to the editor
*FEASIBILITY studies
*IMMUNOMODULATORS
*GENETIC mutation
*AMYLOID
*ANTI-inflammatory agents
*ALZHEIMER'S disease
*PROTEOLYTIC enzymes
*PHOTOAFFINITY labeling
*PROTEINS
Language
ISSN
0028-0836
Abstract
Selective lowering of Aβ42 levels (the 42-residue isoform of the amyloid-β peptide) with small-molecule γ-secretase modulators (GSMs), such as some non-steroidal anti-inflammatory drugs, is a promising therapeutic approach for Alzheimer’s disease. To identify the target of these agents we developed biotinylated photoactivatable GSMs. GSM photoprobes did not label the core proteins of the γ-secretase complex, but instead labelled the β-amyloid precursor protein (APP), APP carboxy-terminal fragments and amyloid-β peptide in human neuroglioma H4 cells. Substrate labelling was competed by other GSMs, and labelling of an APP γ-secretase substrate was more efficient than a Notch substrate. GSM interaction was localized to residues 28–36 of amyloid-β, a region critical for aggregation. We also demonstrate that compounds known to interact with this region of amyloid-β act as GSMs, and some GSMs alter the production of cell-derived amyloid-β oligomers. Furthermore, mutation of the GSM binding site in the APP alters the sensitivity of the substrate to GSMs. These findings indicate that substrate targeting by GSMs mechanistically links two therapeutic actions: alteration in Aβ42 production and inhibition of amyloid-β aggregation, which may synergistically reduce amyloid-β deposition in Alzheimer’s disease. These data also demonstrate the existence and feasibility of ‘substrate targeting’ by small-molecule effectors of proteolytic enzymes, which if generally applicable may significantly broaden the current notion of ‘druggable’ targets. [ABSTRACT FROM AUTHOR]