학술논문

Effect of interfacial spin configuration on y-type spin–orbit torque switching in an antiferromagnetic heavy alloy/ferromagnet bilayer.
Document Type
Article
Source
Applied Physics Letters. 3/14/2021, Vol. 118 Issue 10, p1-5. 5p.
Subject
*FERROMAGNETIC materials
*CRITICAL currents
*TORQUE
*SPIN-orbit interactions
*ALLOYS
*ANTIFERROMAGNETIC materials
*TUNGSTEN alloys
Language
ISSN
0003-6951
Abstract
This work applied an anisotropic magneto-resistance effect for studying the spin–orbit torque (SOT)-driven magnetization switching in an antiferromagnetic heavy alloy/ferromagnet, PtMn/Co bilayer, under y-type SOT geometry. The tailorable magneto-structural ordering of PtMn provides an additional dimension to study the interplay among SOT efficiency, the interfacial spin configuration, and the y-type SOT switching. The results reveal that the SOT efficiency of PtMn, effective field generated by current, can be enhanced via forming the L10 (antiferromagnetic) phase after annealing; however, the efficiency appears to be less sensitive to the interfacial spin configuration. On the other hand, the critical current for the y-type SOT switching is even strongly associated with the PtMn/Co interfacial spin configuration. The lowest (highest) critical current is yielded when Co is antiferromagnetically (ferromagnetically) coupled to PtMn through the exchange bias. Engineering the interfacial spin configuration may provide an effective strategy to promote the critical current for the SOT device. [ABSTRACT FROM AUTHOR]