학술논문

DEFECTIVE ENDOSPERM-D1 (Dee-D1) is crucial for endosperm development in hexaploid wheat.
Document Type
Article
Source
Communications Biology. 12/23/2020, Vol. 3 Issue 1, p1-10. 10p.
Subject
*ENDOSPERM
*WHEAT
*GENOMES
*CHROMOSOMES
*GRAIN
Language
ISSN
2399-3642
Abstract
Hexaploid wheat (Triticum aestivum L.) is a natural allopolyploid and provides a usable model system to better understand the genetic mechanisms that underlie allopolyploid speciation through the hybrid genome doubling. Here we aimed to identify the contribution of chromosome 1D in the development and evolution of hexaploid wheat. We identified and mapped a novel DEFECTIVE ENDOSPERM–D1 (Dee-D1) locus on 1DL that is involved in the genetic control of endosperm development. The absence of Dee-D1 leads to non-viable grains in distant crosses and alters grain shape, which negatively affects grain number and thousand-grain weight. Dee-D1 can be classified as speciation locus with a positive effect on the function of genes which are involved in endosperm development in hybrid genomes. The presence of Dee-D1 is necessary for the normal development of endosperm, and thus play an important role in the evolution and improvement of grain yield in hexaploid wheat. Natalia Tikhenko et al. investigate the genetic contribution of the wheat chromosome 1D to its development and evolution. They find a novel locus, DEFECTIVE ENDOSPERM-D1, on the long arm of 1D that is required for normal endosperm development as its absence leads to non-viable grains and altered grain shape. [ABSTRACT FROM AUTHOR]