학술논문

Integration of upcycling and closed-loop recycling through alternative cyclization–depolymerization.
Document Type
Article
Source
Green Chemistry. 6/7/2022, Vol. 24 Issue 11, p4490-4497. 8p.
Subject
*MOLECULAR weights
*RING formation (Chemistry)
*DEPOLYMERIZATION
*MONOMERS
*POLYMERS
*LOW temperatures
*IONIC liquids
*PLASTIC marine debris
Language
ISSN
1463-9262
Abstract
Currently, to address the problem of end-of-life plastics, scientific researchers are urgently looking for the future generation of polymers and technologies that contribute to upcycling and closed-loop recycling. In this manuscript, an alternative cyclization–depolymerization strategy was developed for integrating upcycling and closed-loop recycling of poly(p-dioxanone) (PPDO), an aliphatic polyester with excellent biocompatibility, biodegradability and mechanical performance. Using a Brønsted acidic ionic liquid as a solvent/catalyst bifunctional agent, the depolymerization and cyclization of linear PPDO (l-PPDO) are realized at relatively low temperatures. Therefore, benefiting from the fully suppressed side reactions, cyclic PPDO (c-PPDO) with a relatively high yield is obtained under such conditions and can be easily separated from other distillable products (mainly the PDO monomer). In a multiple cycle cyclization–depolymerization experiment, c-PPDO was accumulated and its production reached 222 g L−1, which is comparable with that obtained by the most advanced synthesis method of macrocyclic polymers. On the one hand, the upcycling product c-PPDO can convert back to the linear analog by hydrolysis, hence being available for closed-loop recycling again. On the other hand, the other recycling product, i.e., the PDO monomer with very high purity, can repolymerize to l-PPDOs with a high molecular weight and definite terminal groups, therefore achieving highly efficient closed-bi-loop recycling. This alternative cyclization–depolymerization strategy effectively integrated upcycling into closed-loop cycling, making PPDO an ideal candidate for the future generation of green polymers. [ABSTRACT FROM AUTHOR]