학술논문

Optically transparent polymer devices for in situ assessment of cell electroporation.
Document Type
Article
Source
European Biophysics Journal. Feb2015, Vol. 44 Issue 1/2, p57-67. 11p.
Subject
*BIOELECTROCHEMISTRY
*ELECTROPORATION
*PHENANTHRIDINE
*FLUORESCENCE microscopy
*TIN compounds
Language
ISSN
0175-7571
Abstract
In order to study cell electroporation in situ, polymer devices have been fabricated from poly-dimethyl siloxane with transparent indium tin oxide parallel plate electrodes in horizontal geometry. This geometry with cells located on a single focal plane at the interface of the bottom electrode allows a longer observation time in both transmitted bright-field and reflected fluorescence microscopy modes. Using propidium iodide (PI) as a marker dye, the number of electroporated cells in a typical culture volume of 10-100 μl was quantified in situ as a function of applied voltage from 10 to 90 V in a series of $${\sim}$$ 2-ms pulses across 0.5-mm electrode spacing. The electric field at the interface and device current was calculated using a model that takes into account bulk screening of the transient pulse. The voltage dependence of the number of electroporated cells could be explained using a stochastic model for the electroporation kinetics, and the free energy for pore formation was found to be $$45.6\pm 0.5$$ kT at room temperature. With this device, the optimum electroporation conditions can be quickly determined by monitoring the uptake of PI marker dye in situ under the application of millisecond voltage pulses. The electroporation efficiency was also quantified using an ex situ fluorescence-assisted cell sorter, and the morphology of cultured cells was evaluated after the pulsing experiment. Importantly, the efficacy of the developed device was tested independently using two cell lines (C2C12 mouse myoblast cells and yeast cells) as well as in three different electroporation buffers (phosphate buffer saline, electroporation buffer and 10 % glycerol). [ABSTRACT FROM AUTHOR]