학술논문

miR-486-5p and miR-22-3p Enable Megakaryocytic Differentiation of Hematopoietic Stem and Progenitor Cells without Thrombopoietin.
Document Type
Article
Source
International Journal of Molecular Sciences. May2022, Vol. 23 Issue 10, p5355-5355. 24p.
Subject
*THROMBOPOIETIN
*HEMATOPOIETIC stem cells
*PI3K/AKT pathway
*NON-coding RNA
*PROGENITOR cells
*RNA sequencing
Language
ISSN
1661-6596
Abstract
Megakaryocytes release submicron size microparticles (MkMPs) in circulation. We have shown that MkMPs target CD34+ hematopoietic stem/progenitor cells (HSPCs) to induce megakaryocytic differentiation, and that small RNAs in MkMPs play an important role in the development of this phenotype. Here, using single-molecule real-time (SMRT) RNA sequencing (RNAseq), we identify the synergetic effect of two microRNAs (miRs), miR-486-5p and miR-22-3p (highly enriched in MkMPs), in driving the Mk differentiation of HSPCs in the absence of thrombopoietin (TPO). Separately, our data suggest that the MkMP-induced Mk differentiation of HSPCs is enabled through JNK and PI3K/Akt/mTOR signaling. The interaction between the two signaling pathways is likely mediated by a direct target of miR-486-5p and a negative regulator of PI3K/Akt signaling, the phosphatase and tensin homologue (PTEN) protein. Our data provide a possible mechanistic explanation of the biological effect of MkMPs in inducing megakaryocytic differentiation of HSPCs, a phenotype of potential physiological significance in stress megakaryopoiesis. [ABSTRACT FROM AUTHOR]