학술논문

Antifungal activity and killing kinetics of anidulafungin, caspofungin and amphotericin B against Candida auris.
Document Type
Journal Article
Source
Journal of Antimicrobial Chemotherapy (JAC). Aug2019, Vol. 74 Issue 8, p2295-2302. 8p.
Subject
*AMPHOTERICIN B
*CANDIDA
*ECHINOCANDINS
*ANTIFUNGAL agents
Language
ISSN
0305-7453
Abstract
Background: Candida auris is an emerging MDR pathogen. It shows reduced susceptibility to azole drugs and, in some strains, high amphotericin B MICs have been described. For these reasons, echinocandins were proposed as first-line treatment for C. auris infections. However, information on how echinocandins and amphotericin B act against this species is lacking.Objectives: Our aim was to establish the killing kinetics of anidulafungin, caspofungin and amphotericin B against C. auris by time-kill methodology and to determine if these antifungals behave as fungicidal or fungistatic agents against this species.Methods: The susceptibility of 50 C. auris strains was studied. Nine strains were selected (based on echinocandin MICs) to be further studied. Minimal fungicidal concentrations, in vitro dose-response and time-kill patterns were determined.Results: Echinocandins showed lower MIC values than amphotericin B (geometric mean of 0.12 and 0.94 mg/L, respectively). Anidulafungin and caspofungin showed no fungicidal activity at any concentration (maximum log decreases in cfu/mL between 1.34 and 2.22). On the other hand, amphotericin B showed fungicidal activity, but at high concentrations (≥2.00 mg/L). In addition, the tested polyene was faster than echinocandins at killing 50% of the initial inoculum (0.92 versus >8.00 h, respectively).Conclusions: Amphotericin B was the only agent regarded as fungicidal against C. auris. Moreover, C. auris should be considered tolerant to caspofungin and anidulafungin considering that their MFC:MIC ratios were mostly ≥32 and that after 6 h of incubation the starting inoculum was not reduced in >90%. [ABSTRACT FROM AUTHOR]