학술논문

Genetic variation in five genes important in telomere biology and risk for breast cancer.
Document Type
Journal Article
Source
British Journal of Cancer. 9/17/2007, Vol. 97 Issue 6, p832-836. 5p. 2 Charts.
Subject
*TELOMERES
*BREAST cancer
*GENETIC polymorphisms
*CANCER in women
*HUMAN genetic variation
*CHROMOSOMES
*BREAST tumors
*CARRIER proteins
*DNA
*GENETICS
*PROTEINS
*RESEARCH funding
*RISK assessment
*TRANSFERASES
*CASE-control method
*NUCLEAR proteins
*ODDS ratio
*GENOTYPES
Language
ISSN
0007-0920
Abstract
Telomeres, consisting of TTAGGG nucleotide repeats and a protein complex at chromosome ends, are critical for maintaining chromosomal stability. Genomic instability, following telomere crisis, may contribute to breast cancer pathogenesis. Many genes critical in telomere biology have limited nucleotide diversity, thus, single nucleotide polymorphisms (SNPs) in this pathway could contribute to breast cancer risk. In a population-based study of 1995 breast cancer cases and 2296 controls from Poland, 24 SNPs representing common variation in POT1, TEP1, TERF1, TERF2 and TERT were genotyped. We did not identify any significant associations between individual SNPs or haplotypes and breast cancer risk; however, data suggested that three correlated SNPs in TERT (-1381C>T, -244C>T, and Ex2-659G>A) may be associated with reduced risk of breast cancer among individuals with a family history of breast cancer (odds ratios 0.73, 0.66, and 0.57, 95% confidence intervals 0.53-1.00, 0.46-0.95 and 0.39-0.84, respectively). In conclusion, our data do not support substantial overall associations between SNPs in telomere pathway genes and breast cancer risk. Intriguing associations with variants in TERT among women with a family history of breast cancer warrant follow-up in independent studies. [ABSTRACT FROM AUTHOR]