학술논문

An integrated wavemeter based on fully-stabilized resonant electro-optic frequency comb.
Document Type
Article
Source
Communications Physics. 11/16/2023, Vol. 6 Issue 1, p1-6. 6p.
Subject
*OPTICAL frequency conversion
*OPTICAL measurements
*OPTICAL communications
*ATOMIC transitions
*ATOMIC clocks
*LASER pumping
*WAVELENGTH measurement
Language
ISSN
2399-3650
Abstract
Optical frequency combs provide a powerful tool for precise measurement of the optical frequency, holding significant importance in fields such as spectroscopy, optical communication and optical clock. The frequency stability of the comb line determines the precision of the frequency measurement, but the delicate interplay between high precision, low power consumption and integration still needs to be optimized. To this aim, here we demonstrate a frequency measurement scheme based on a fully stabilized electro-optic comb, in which the pump laser frequency and repetition rate are independently locked to the atomic transition and microwave signal. The measurement precision of the demonstrated wavemeter can reach sub-kHz-level, and the parallel measurement of multiple wavelengths can be performed. Therefore, by combining the technical scheme reported here with advanced integrated functional devices, our system is expected to provide a feasible solution for chip-scale frequency precision measurement and reference. Optical frequency combs enable precise measurement of optical frequencies, but integrated setups require a delicate balance between high precision and low power consumption. The authors demonstrate a sub-kHz-frequency measurement scheme based on a fully stabilized electro-optic comb that enables the parallel measurement of multiple wavelengths. [ABSTRACT FROM AUTHOR]