학술논문

Functional profile of a novel modulator of serotonin, dopamine, and glutamate neurotransmission.
Document Type
Article
Source
Psychopharmacology. Feb2015, Vol. 232 Issue 3, p605-621. 17p.
Subject
*SCHIZOPHRENIA treatment
*NEUROBEHAVIORAL disorders
*IMMUNOMODULATORS
*NEURAL transmission
*GLUTAMIC acid
*SEROTONIN
*DOPAMINE
*DISEASE prevalence
*THERAPEUTICS
Language
ISSN
0033-3158
Abstract
Rationale: Schizophrenia remains among the most prevalent neuropsychiatric disorders, and current treatment options are accompanied by unwanted side effects. New treatments that better address core features of the disease with minimal side effects are needed. Objectives: As a new therapeutic approach, 1-(4-fluoro-phenyl)-4-((6bR, 10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8-yl)-butan-1-one (ITI-007) is currently in human clinical trials for the treatment of schizophrenia. Here, we characterize the preclinical functional activity of ITI-007. Results: ITI-007 is a potent 5-HT receptor ligand ( K = 0.5 nM) with strong affinity for dopamine (DA) D receptors ( K = 32 nM) and the serotonin transporter (SERT) ( K = 62 nM) but negligible binding to receptors (e.g., H histaminergic, 5-HT, and muscarinic) associated with cognitive and metabolic side effects of antipsychotic drugs. In vivo it is a 5-HT antagonist, blocking (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI)-induced headtwitch in mice with an inhibitory dose 50 (ID) = 0.09 mg/kg, per oral (p.o.), and has dual properties at D receptors, acting as a postsynaptic D receptor antagonist to block D-amphetamine hydrochloride (D-AMPH) hyperlocomotion (ID = 0.95 mg/kg, p.o.), yet acting as a partial agonist at presynaptic striatal D2 receptors in assays measuring striatal DA neurotransmission. Further, in microdialysis studies, this compound significantly and preferentially enhances mesocortical DA release. At doses relevant for antipsychotic activity in rodents, ITI-007 has no demonstrable cataleptogenic activity. ITI-007 indirectly modulates glutamatergic neurotransmission by increasing phosphorylation of GluN2B-type N-methyl- d-aspartate (NMDA) receptors and preferentially increases phosphorylation of glycogen synthase kinase 3β (GSK-3β) in mesolimbic/mesocortical dopamine systems. Conclusion: The combination of in vitro and in vivo activities of this compound support its development for the treatment of schizophrenia and other psychiatric and neurologic disorders. [ABSTRACT FROM AUTHOR]