학술논문

Nix-Mediated Mitophagy Modulates Mitochondrial Damage During Intestinal Inflammation.
Document Type
Article
Source
Antioxidants & Redox Signaling. Jul2020, Vol. 33 Issue 1, p1-19. 19p.
Subject
*INFLAMMATORY bowel diseases
*ULCERATIVE colitis
*PATHOLOGY
*INFLAMMATION
*SODIUM sulfate
*DEXTRAN sulfate
*INTESTINAL physiology
Language
ISSN
1523-0864
Abstract
Aims: Mitochondrial stress and dysfunction within the intestinal epithelium are known to contribute to the pathogenesis of inflammatory bowel disease (IBD). However, the importance of mitophagy during intestinal inflammation remains poorly understood. The primary aim of this study was to investigate how the mitophagy protein BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like (BNIP3L/NIX) mitigates mitochondrial damage during intestinal inflammation in the hopes that these data will allow us to target mitochondrial health in the intestinal epithelium as an adjunct to immune-based treatment strategies. Results: In the intestinal epithelium of patients with ulcerative colitis, we found that NIX was upregulated and targeted to the mitochondria. We obtained similar findings in wild-type mice undergoing experimental colitis. An increase in NIX expression was found to depend on stabilization of hypoxia-inducible factor-1 alpha (HIF1α), which binds to the Nix promoter region. Using the reactive oxygen species (ROS) scavenger MitoTEMPO, we were able to attenuate disease and inhibit both HIF1α stabilization and subsequent NIX expression, suggesting that mitochondrially derived ROS are crucial to initiating the mitophagic response during intestinal inflammation. We subjected a global Nix−/− mouse to dextran sodium sulfate colitis and found that these mice developed worse disease. In addition, Nix−/− mice were found to exhibit increased mitochondrial mass, likely due to the inability to clear damaged or dysfunctional mitochondria. Innovation: These results demonstrate the importance of mitophagy within the intestinal epithelium during IBD pathogenesis. Conclusion: NIX-mediated mitophagy is required to maintain intestinal homeostasis during inflammation, highlighting the impact of mitochondrial damage on IBD progression. [ABSTRACT FROM AUTHOR]