학술논문

A Bifunctional Electrocatalyst for OER and ORR based on a Cobalt(II) Triazole Pyridine Bis‐[Cobalt(III) Corrole] Complex.
Document Type
Article
Source
Angewandte Chemie. 5/15/2023, Vol. 135 Issue 21, p1-5. 5p.
Subject
*OXYGEN evolution reactions
*CHARGE transfer kinetics
*COBALT
*RENEWABLE energy sources
*TRIAZOLES
*PYRIDINE
*CHARGE transfer
Language
ISSN
0044-8249
Abstract
As alternative energy sources are essential to reach a climate‐neutral economy, hydrogen peroxide (H2O2) as futuristic energy carrier gains enormous awareness. However, seeking for stable and electrochemically selective H2O2 ORR electrocatalyst is yet a challenge, making the design of—ideally—bifunctional catalysts extremely important and outmost of interest. In this study, we explore the application of a trimetallic cobalt(II) triazole pyridine bis‐[cobalt(III) corrole] complex CoIITP[CoIIIC]23 in OER and ORR catalysis due to its remarkable physicochemical properties, fast charge transfer kinetics, electrochemical reversibility, and durability. With nearly 100 % selective catalytic activity towards the two‐electron transfer generated H2O2, an ORR onset potential of 0.8 V vs RHE and a cycling stability of 50 000 cycles are detected. Similarly, promising results are obtained when applied in OER catalysis. A relatively low overpotential at 10 mA cm−2 of 412 mV, Faraday efficiency 98 % for oxygen, an outstanding Tafel slope of 64 mV dec−1 combined with superior stability. [ABSTRACT FROM AUTHOR]