학술논문

C. elegans as Model for the Study of High Glucose-Mediated Life Span Reduction.
Document Type
Article
Source
Diabetes. Nov2009, Vol. 58 Issue 11, p2450-2456. 7p. 1 Color Photograph, 1 Black and White Photograph, 1 Chart, 4 Graphs.
Subject
*BLOOD sugar analysis
*REACTIVE oxygen species
*MITOCHONDRIA
*GLYOXALASE
*CAENORHABDITIS elegans
*ANIMAL models of diabetes
Language
ISSN
0012-1797
Abstract
OBJECTIVE--Establishing Caenorhabditis elegans as a model for glucose toxicity-mediated life span reduction. RESEARCH DESIGN AND METHODS--C. elegans were maintained to achieve glucose concentrations resembling the hyperglycemic conditions in diabetic patients. The effects of high glucose on life span, glyoxalase-1 activity, advanced glycation end products (AGEs), and reactive oxygen species (ROS) formation and on mitochondrial function were studied. RESULTS--High glucose conditions reduced mean life span from 18.5 ± 0.4 to 16.5 ± 0.6 days and maximum life span from 25.9 ± 0.4 to 23.2 ± 0.4 days, independent of glucose effects on cuticle or bacterial metabolization of glucose. The formation of methylglyoxal-modified mitochondrial proteins and ROS was significantly increased by high glucose conditions and reduced by mitochondrial uncoupling and complex IIIQo inhibition. Over-expression of the methylglyoxal-detoxifying enzyme glyoxalase-1 attenuated the life-shortening effect of glucose by reducing AGE accumulation (by 65%) and ROS formation (by 50%) and restored mean (16.5 ± 0.6 to 20.6 ± 0.4 days) and maximum life span (23.2 ± 0.4 to 27.7 ± 2.3 days). In contrast, inhibition of glyoxalase-1 by RNAi further reduced mean (16.5 ± 0.6 to 13.9 ± 0.7 days) and maximum life span (23.2 ± 0.4 to 20.3 ± 1.1 days). The life span reduction by glyoxalase-1 inhibition was independent from the insulin signaling pathway because high glucose conditions also affected daf-2 knockdown animals in a similar manner. CONCLUSIONS--C. elegans is a suitable model organism to study glucose toxicity, in which high glucose conditions limit the life span by increasing ROS formation and AGE modification of mitochondrial proteins in a daf-2 independent manner. Most importantly, glucose toxicity can be prevented by improving glyoxalase-1-dependent methylglyoxal detoxification or preventing mitochondrial dysfunction. Diabetes 58:2450-2456, 2009 [ABSTRACT FROM AUTHOR]